I have a file example.txt
with about 3000 lines with a string in each line. A small file example would be:
>cat example.txt
saudifh
sometestPOIFJEJ
sometextASLKJND
saudifh
sometextASLKJND
IHFEW
foo
bar
I want to check all repeated lines in this file and output them. The desired output would be:
>checkRepetitions.sh
found two equal lines: index1=1 , index2=4 , value=saudifh
found two equal lines: index1=3 , index2=5 , value=sometextASLKJND
I made a script checkRepetions.sh
:
#!bin/bash
size=$(cat example.txt | wc -l)
for i in $(seq 1 $size); do
i_next=$((i+1))
line1=$(cat example.txt | head -n$i | tail -n1)
for j in $(seq $i_next $size); do
line2=$(cat example.txt | head -n$j | tail -n1)
if [ "$line1" = "$line2" ]; then
echo "found two equal lines: index1=$i , index2=$j , value=$line1"
fi
done
done
However this script is very slow, it takes more than 10 minutes to run. In python it takes less than 5 seconds… I tried to store the file in memory by doing lines=$(cat example.txt)
and doing line1=$(cat $lines | cut -d',' -f$i)
but this is still very slow…
Advertisement
Answer
See why-is-using-a-shell-loop-to-process-text-considered-bad-practice for some of the reasons why your script is so slow.
$ cat tst.awk
{ val2hits[$0] = val2hits[$0] FS NR }
END {
for (val in val2hits) {
numHits = split(val2hits[val],hits)
if ( numHits > 1 ) {
printf "found %d equal lines:", numHits
for ( hitNr=1; hitNr<=numHits; hitNr++ ) {
printf " index%d=%d ,", hitNr, hits[hitNr]
}
print " value=" val
}
}
}
$ awk -f tst.awk file
found 2 equal lines: index1=1 , index2=4 , value=saudifh
found 2 equal lines: index1=3 , index2=5 , value=sometextASLKJND
To give you an idea of the performance difference using a bash script that’s written to be as efficient as possible and an equivalent awk script:
bash:
$ cat tst.sh
#!/bin/bash
case $BASH_VERSION in ''|[123].*) echo "ERROR: bash 4.0 required" >&2; exit 1;; esac
# initialize an associative array, mapping each string to the last line it was seen on
declare -A lines=( )
lineNum=0
while IFS= read -r line; do
(( ++lineNum ))
if [[ ${lines[$line]} ]]; then
printf 'Content previously seen on line %s also seen on line %s: %sn'
"${lines[$line]}" "$lineNum" "$line"
fi
lines[$line]=$lineNum
done < "$1"
$ time ./tst.sh file100k > ou.sh
real 0m15.631s
user 0m13.806s
sys 0m1.029s
awk:
$ cat tst.awk
lines[$0] {
printf "Content previously seen on line %s also seen on line %s: %sn",
lines[$0], NR, $0
}
{ lines[$0]=NR }
$ time awk -f tst.awk file100k > ou.awk
real 0m0.234s
user 0m0.218s
sys 0m0.016s
There are no differences in the output of both scripts:
$ diff ou.sh ou.awk
$
The above is using 3rd-run timing to avoid caching issues and being tested against a file generated by the following awk script:
awk 'BEGIN{for (i=1; i<=10000; i++) for (j=1; j<=10; j++) print j}' > file100k
When the input file had zero duplicate lines (generated by seq 100000 > nodups100k
) the bash script executed in about the same amount of time as it did above while the awk script executed much faster than it did above:
$ time ./tst.sh nodups100k > ou.sh
real 0m15.179s
user 0m13.322s
sys 0m1.278s
$ time awk -f tst.awk nodups100k > ou.awk
real 0m0.078s
user 0m0.046s
sys 0m0.015s